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ABSTRACT  
Developers of autonomous systems require testing to train and verify their algorithms. End users may also use 
this data when deciding how to efficiently utilise the systems. Simulation represents an alternative to 
experimentation in real environments, which is safer, more cost-effective and, allows repeatable and 
controllable experiments to be executed. Traditionally, experts in robotics use simulators that focus on details 
related to their system while simplifying aspects related to the environment, communications and inter-asset 
relationships. As an alternative, CMRE proposes a Maritime Simulation Framework (MSF), interoperable 
with robotics middleware (i.e. MOOS and ROS), adopting a hardware and software-in-the loop-simulation 
approach, which permits the simulation of important external factors which are usually simplified. The 
inclusion of these expanded elements enables the discovery of interactions that may not be known to the 
autonomous system’s developer, improving the robustness of the system under development. The aim of this 
work is to build a configurable and extendable simulation framework to train and test autonomous behaviours 
for maritime systems, to assist system developers and to support end users’ operational decisions. 

The framework is composed of dedicated simulators within the high level architecture (HLA), with federates 
simulating environments, platform dynamics, sensing emulation, communications and intuitive visualizations. 
The proposed framework provides a simulation that encompasses the challenges of complex maritime 
operations, with a focus on the underwater domain, providing a more comprehensive and realistic capability 
than more traditional approaches. To date the MSF has been used to support the development of autonomous 
system algorithms in Mine Counter Measure (MCM) and Anti-Submarine Warfare (ASW) missions, with single 
or multiple vehicle configurations.  

1.0   INTRODUCTION 

With every day that passes, autonomous systems (AS) are deployed in an increasing number of diverse 
scenarios where they are required to complete challenging tasks autonomously. This implies that the intelligent 
algorithms governing the behaviour and decisions of the systems need to be more complex, comprehensive 
and adaptive to tackle the diversity of the situations faced. In this context, autonomous systems use machine 
learning methods to partially or fully solve complex tasks. This process usually requires a training or learning 
process to generate a computational model of the task. This model defines the actions that the system can take 
and the result of the execution of those actions in the environment where the system is performing the task. 
With this model, the system is able to predict which of the possible actions could take it one step forward in 
the consecution of its goal. The accuracy of this prediction depends, mainly, on the quality of the training. 
Modelling and Simulation (M&S) has proven to be a key element in the creation of high quality and realistic 
simulation environments to train and test machine learning algorithms for autonomous systems [1] [2]. 

In simple terms, the goal of all machine learning algorithms is to tune a set of parameters according to a set of 
inputs to obtain a desired output. Within the branch of machine learning, AS developers can find diverse 
methodologies and approaches to address this issue. In some methodologies, like supervised and unsupervised 
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machine learning, the algorithm can learn the model from either a dataset obtained from the real world or 
synthetic data generated by simulation. Meanwhile, machine learning methods based on reinforcement 
learning require the system to be able to receive feedback from the learning environment in order to adapt its 
behaviour to the actions that have a positive impact to obtain the desired results. In both cases, M&S can be a 
supporting tool in the learning process. In the former case, generating extensive synthetic data sets when real 
data is difficult or costly to obtain limiting the learning capabilities. In the latter case, providing a safe-to-fail 
and interactive environment where the systems can receive feedback minimizing risks.  

Traditionally, machine learning-based frameworks to train and validate development of new algorithms and 
systems are developed using common benchmarking problems or in a very ad-hoc manner [3] [4]. The 
scenarios used in benchmarking frameworks are not often designed to train systems to learn applied problems 
in real world conditions, since the goal is to compare new algorithms with stablished methods. For training 
algorithms that will be used in real world applications, the developer usually extends an existing simulation 
tool or creates a new one specifically to solve the problem. These approaches narrow the learning capabilities 
of the system to a set of foreseen conditions and limits the discovery of possible interactions with elements 
unknown by the autonomous system’s developer. Moreover, it hampers the overcoming of the reality gap, 
which is one of the most important considerations in the transition of the systems from a testing and training 
environment to real operations.  

In order to deal efficiently with these shortcomings, the authors of this work started in 2015 the development 
of a multidisciplinary standard-based distributed simulation environment for underwater autonomous systems 
[5] [6]. This paper presents an update of that initial framework now called Maritime Simulation Framework 
(MSF).  

The content of this paper is structured as follows. Section 2 describes the background of this work. Section 3 
explains in detail the MSF capabilities and functionalities. Section 4 presents possible use cases of the MSF 
for training autonomous underwater vehicles, and Section 5 closes this paper summarizing the conclusions of 
the work including the benefits of using the MSF. 

2.0 BACKGROUND 

In 2015, when the development of MSF started, most of the simulation tools or frameworks available for the 
underwater domain were mainly focused on the simulation of Remotely Operated Vehicles (ROVs) and on 
providing functionalities for training operators [7] [8]. Those frameworks include accurate physics affected by 
the sea state and the motion of the ROV’s tether, sensor simulations (e.g. sonar and optical cameras), and 
different set of tools such as underwater manipulators, laser measuring devices, and water samplers [9] [10]. 
But none of them meet the requirements on scalability and flexibility needed for the CMRE framework. 

In the latest years, as the development of underwater unmanned system advanced, the development of 
simulation frameworks for underwater scenarios has also advanced and new tools are available [11] [12]. 
Simulation tools such as UWSim [13], UUV [14], StoneFish [15], URSim [16], USVSim [17], Rock-Gazebo 
[18] or freefloating-gazebo [19] provide accurate simulation of dynamics and hydrodynamics, and realistic 
visual simulation. However, these tools lack of some functionalities like compliance with High Level 
Architecture (HLA) [20], the NATO standard for distributed M&S (STANAG 4603 [20]; ability to simulate 
underwater communications and the effect of environmental conditions on these communications; or 
interoperability with Command and Control (C2) systems. These features are required in order to simulate 
NATO Maritime Operational Missions of high importance for CMRE researchers and the military operational 
community that CMRE is supporting. 

Developed following the IEEE recommended practices for distributed simulation and interoperability [21], 
MSF allows for the seamless integration of autonomous systems in the simulated world maximising 
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interoperability, the usage of distributed resources, and reusability to facilitate the development of complex 
simulated environments. While, the majority of the works presented in the robotics’ community are based on 
the injection of simulated events directly into the operating system of the robot [22] or the integration of the 
machine learning algorithms in a learning framework or simulation. The presented proposal is derived from 
M&S community ideas, like virtual reality and immersive environments, where systems are “immersed” in 
simulated environments.  

3.0 MARITIME SIMULATION FRAMEWOK (MSF) 

The MSF capability is achieved bringing together the different communities using M&S standards as a 
baseline for the integration and connectivity with the standards of other communities [5].  The main motivation 
behind the development of a standards-based immersive environment is to eliminate the effort required to 
include existing ASs into complex and interoperable simulated scenarios. In this sense, this proposal preserves 
the existent control architecture in the system, by adding a layer or middleware in the simulation environment 
to achieve the interoperability of the desired system at software or even at hardware level. 

MSF is interoperable with the most common robotics middleware’s such as the Robotic Operating System 
(ROS) [23] and the Mission-Orientated Operating Suite (MOOS) [24]. MSF is a distributed, modular and 
scalable simulation framework. By adopting an approach of Hardware and Software-in-the-loop, MSF allows 
to immerse robotic systems into realistic scenarios and the exchange of information with specialized models 
or modules developed by Subject Matter Experts (SMEs). With this variety of simulation tools, MSF permits 
the simulation of complex maritime scenarios that incorporate the underwater, water surface, and air domains. 
MSF can be configured to different levels of detail and includes capabilities required for extended maritime 
simulations, including the execution of cooperative and collaborative scenarios. 

MSF offers mission capabilities and functionalities that are not frequently found in simulation frameworks 
commonly used for training autonomous systems, like environmental, communications and multi-asset 
simulations. With the availability of these tools, the autonomous systems can be trained in more complex 
situations allowing testing and validation in more challenging conditions, closer to those that the systems will 
face in reality.  

These developments, and the ones on going, considering a possible integration in a future with machine 
learning frameworks like TensorFlow [25], PyTorch [26], Sci-Kit Learn [27], or H2O [28], for supervised and 
unsupervised learining; or OpenAI Gym [29], RLLib [30], Tensorforce [31], or Horizon [32] , for 
reinforcement learning and its combination with deep learning. 

3.1 MSF High Level Architecture Design 
Figure 1 shows a high-level view of the different simulators and tools available in the MSF. Each of these 
components communicates using the Run Time Infrastructure (RTI) middleware required to communicate 
using HLA standard. The simulation framework has been designed following a loosely coupled architecture 
so the simulation can run with only the desired components and, thanks to the HLA principles, it can be 
executed in one computer or distributed among multiple computers across one or more networks. Moreover, 
the simulation has a time-management system, which allows the user to run the simulation in fast-time, a 
feature which is of paramount importance in time-intensive machine learning training applications.  
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Figure 1 Design of the Maritime Simulation Framework (MSF)  

The next subsections briefly describe the modules or federates that compose the MSF and their capabilities.  

3.1.1 Asset Simulator 

The asset simulator is responsible for simulating all the entities that move in the different domains (underwater, 
sea surface, and air) inside the simulation environment. It takes into consideration the dynamics and features 
of the assets, their guidance type, environmental effects and the uncertainty in estimating the position.  

The assets simulator defines three conceptual categories (hovering, torpedo, and glider) that cover almost all 
the asset types found in a maritime scenario. These classification categories have been identified according to 
the asset’s controllable Degrees of Freedom (DoF). The features of the assets are parametrized and can be 
added or modified editing the configuration files of the simulator. 

The guidance of the assets can be done with three types of commands; steering commands (target forward 
speed, target heading, target altitude/depth), waypoint missions, and track line missions.  These commands can 
be implemented in two main ways; the mission can be defined as a part of a scenario, allowing the federate to 
take full control of the asset. Alternatively, the commands may be the provided by a connected robotic system.  

3.1.2 Sensor Simulator 

The Sensor Simulator aims at simulating the effect of a range of sensors in the simulation scenario. The 
modelling of a specific sensor’s ability to detect and classify a particular target is based on the generation of a 
statistical model. The statistical model considers not only the sensor and target types, but also their relative 
orientation and range, shape, material, and local environmental considerations. In addition to the availability 
of models that represent the detection and classification, simplified models are also incorporated into the 
Sensor Simulator that generate clutter and false detections. Key benefits of this approach focus on the ability 
to abstract many of the complex and deeply analytical sensor interactions while maintaining the ability to 
provide realistic and representative inputs into the higher-level functions. 

The sensors simulator classifies the sensor in four different conceptual model type based on how is defined 
their field of view. The defined types are Single directional field of view (i.e. Optical Camera), Twin swath 
field of view (i.e. side scan sonar), Omni-directional field of view (i.e. Passive sonar) and Multi static sensors 
(i.e. Multi static sonar). 
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Finally, the sensor simulator can be enrich with external tools (e.g. RAPS [33] or previously MSTPA [34]) to 
generate more detailed information for representing the environment, for example the inclusion of detailed 
acoustic underwater maps to represent the probability of detection using models like ARTEMIS [35] [36] [37] 
[38] or Bellhop [39]. 

3.1.3 Environmental Simulator 

The goal of this federate is to generate a meteorological and oceanographic environment to influence a wide 
range of assets and simulation components. The generated environmental model is divided into four gridded 
zones, the Air Column, the Water Surface, the Water Column and the Seabed. Each zone is broken into a series 
of ‘data cubes’ that can be referenced by row, column and, in the case of the air and water zones, layer values. 

The simulation environment can be loaded with meteorological and oceanographic data from various sources, 
with data accepted in a range of standardised formats that are well-known to the environmental modelling 
community. These data may be obtained from public sources such as Copernicus [40], Météo-France [41]and 
European Marine Observation and Data Network [42]. Several of these sources contain data that represent the 
evolution of the data over time, the environmental simulator is capable to update the environmental conditions 
according to the evolution of the data and the simulation. 

This approach ensures that all of the published conditions are consistent with each other (i.e., it is unlikely to 
be snowing if the air temperature is 30 ̊C). However, there are uses of M&S where this consistency is not 
required, and the simulation objectives require control over each parameter individually. To enable this, the 
user is able to select and tailor individual environmental parameters before the simulation using a Graphical 
User Interface (GUI). 

3.1.4 Robotics Interoperability 

The AS software architecture is usually organized following a modular and layered approach. The modules 
and layers are independent to facilitate the reusability and increase the robustness; however, this has the 
drawback that it requires a communication system between processes. Hence, one of the main roles of robotics 
middleware is to offer robust and reliable communication between modules. For this reason, the MSF disposes 
of wrappers or bridges to convert HLA data into MOOS and ROS middleware. In this way some layers or 
modules can be replaced by data generate in the MSF without modifying the software of the autonomous 
systems.  

3.1.5 Communication Simulator 

The Communication Simulator is in charge of simulating the transmission of messages between assets in the 
simulation. The federate needs to analyse the environment, the type of communication, and the geometry of 
the communication network to estimate the transmission probability and the delay to simulate the transmission 
and reception of messages. The estimation of the acoustic propagation is based on the BELLHOP [39] acoustic 
model. This functionality is of paramount importance for the simulation of missions with cooperative and 
collaborative behaviours.  

The Communication Simulator contains software-in-the-loop, in order to simulate the underwater network 
strategies that needs to be consider to perform realistic transmission of messages. Currently it incorporates 
Cognitive Communications Architecture (CCA) [43] and is compatible with DCCL message encoding [44].  

3.1.6 Viewer 3D Federate 

The Viewer Federate displays an intuitive 3D representation in a virtual environment of the entire simulated 
scenario. The realistic representation of the scenario has several benefits; in particular, it supports face 
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validation of the simulation and facilitates the explanation of the autonomous behaviours to users. The 
visualisation can be presented using conventional screens or using Virtual Reality (VR) devices. Figure 2 
shows two screen captures of the Viewer 3D. 

                  

Figure 2 Two images of the viewer 3D showing the typical assets used in an ASW scenario with 
the assets of the NATO STO CMRE. At the left an image from the surface and on the right an 

image from the underwater perspective.  

3.1.7 Logger Federate, Data Analysis and Data Visualization 

The logger federate aims to collect all the relevant information that is generated during the simulation. The 
information collected ranges from telemetry of the assets to the detections generated from the simulated 
sensors, it includes the information estimated during the simulations and the ground truth to perform the 
analysis of the results. The goal is to record similar information to that scientists or engineers receive from 
typical experimentation enriched with ground truth information available only in a simulated environment.  

The Data Analysis and Visualizer are complementary tools developed by the authors to support the 
interpretation and analysis of the simulation results. The Data Analysis processes the raw data generated by 
the logger during the simulation or simulations and computes Key Performance Indicators (KPIs) that allow 
the user to measure an algorithm’s performance. The Data Visualizer reads part of the raw data and part of the 
KPIs to display the results in a friendly and visual way. 

These tools can support the training of the machine learning algorithm in multiple forms. For example spotting 
areas that are not improving over the training of the behaviour caused by an incomplete definition of the 
learning problem. Furthermore, comparing the results of different learning strategies or traditional methods to 
identify which is the best option. 

3.1.8 Simulation Manager, Simulation Editor and Operational Supervisor 

The simulation manager, simulation editor and operational supervisor are software tools that improve the user 
experience in the definition of the simulated scenario, the execution of one or multiple simulations, and the 
supervision of the execution. The three tools offer a GUI to coordinate the  

The definition of scenarios includes selecting the geographical location, vehicles with their payloads and 
missions, and the meteorological conditions. This helps to prepare the scenario for the simulation. Which can 
be also used to prepare the training scenario of the AS, and it is performed in the simulation editor (see Figure 
3). 
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Figure 3 Two simulation scenario configured in the Simulation Editor tool. On the left a Trackline 
mission to be followed by an AUV with 3 objects located on the seabed, on the right a boat that 
cross an area where an Unmanned Aerial Vehicle (UAV) and a Unmanned Surface Vehicle (USV) 

are patrolling. 

The simulation manager facilitates the execution of the simulation simplifying the execution of a distributed 
simulation, the proper configuration of the simulation, and concentrating all the usual spares information in 
one single interface (see Figure 4). 

 

Figure 4 Screen Capture of the Simulation Manager while running a simulation. In the image can 
be seen four active federates (Assets Simulator, Sensor simulator, Environmental Federate and 

Logger Federate), and the command line outputs of three of them. 

The operational supervisor, is two dimensional (2D) representation of the scenario where is displayed the 
current locations, trajectory performed and planned missions during the execution of the simulation (see Figure 
5). This offers a face validation capability less computational heavy than the viewer 3D. Moreover, 2D 
representation is a more comprehensive representation when the assets are sparse in large areas. 
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Figure 5 Two images of the Operational supervisor showing the entities status, active missions 
and performed trajectories, in the two scenarios designed in Figure 3. 

4.0 USE CASES AND APPLICATION 

The MSF has been designed and built in the context of the NATO STO CMRE, aiming to create a simulation 
framework to perform Verification and Validation (V&V) and Concept Development and Experimentation 
(CD&E) of innovative behaviours for maritime AS. However, with minor modification the same environment 
can be used by SME’s to perform AS algorithm training, testing and mission-level concept development in 
maritime environments.  

As an initial proof of concept, the MSF has been applied as the keystone of a distributed simulation capability 
supported by CMRE [45]. Within this example, the MSF environmental, communications, asset and sensor 
federates were run to generate a range of datasets that represented the evolution of a multi-domain, multi-asset 
maritime mission with varying meteorological and oceanographic environmental conditions. These datasets 
were used to train, then test, multiple data fusion machine learning algorithms developed by partner 
organisations. 

This proof of concept event demonstrated the potential value of the MSF in two main ways; firstly, the 
simulation environment successfully provided machine learning developers with a persistent, on-line 
algorithm, training and testing environment in which they could gain access to representative datasets 
generated by the each of the connected federates. This allowed the algorithms SME’s to train, test and improve 
their algorithms in advance of a series of real-life sea trials improvements to be identified and implemented. 
Secondly, the availability of the MSF visualisation and data analysis tools allowed the separate algorithm 
developer and end-user SME communities to jointly communicate and understand key algorithm requirements, 
capabilities and limitations. Again, conducted in advance of a series of live sea trials, this exchange of 
information took place in a controlled, repeatable and safe-to-fail environment allowing improvements to both 
technical capabilities and their mission-level application. 

Building upon this initial proof of concept, the authors of this paper propose two further scenarios that could 
be simulated to better investigate the training and testing of AS behaviours within the MSF.   

4.1 Learning how to protect a choke point. 
The MSF is capable to offer a simulated scenario where an enemy entity wants to enter a choke point area 
while the blue assets protects the area and track the incoming entity. The MSF dispose of multiple sensors 
(Active and Passive sonars, Radar systems, Cameras) that simulation the detection of diverse types of 
trespassers.  
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From the point of view of the authors different aspects of this scenario could be learned, one for example could 
be the geographical disposition of the assets to maximize the full coverage of the area, second aspect that could 
be learn is the tracking behaviour once the suspicious asset has been detected in order to maximize the tracking 
time. 

4.2 Learning how to Survey a Q-Route.  
In this scenario the aim of the simulation is to present a Q-Route that needs to be surveyed in order to guarantee 
the safety passage of vessels in that area. The simulation is capable to offer a scenario with different type of 
seabed, where a set of objects can be placed by the user or randomly on the sea bottom. The simulation already 
offers a set of sensors that can be configure in order to detect and classify the objects and also to detect and 
classify the characteristics of the seabed. The user of the simulation could train a system to learn how to survey 
the Q-Route area while dynamically adapt the trajectory according to the obtained environmental data. 

5.0   CONCLUSIONS. 

The Maritime Simulation Framework (MSF) developed by the NATO STO CMRE is a modelling and 
simulation framework based on HLA that covers the simulation of maritime operations with a special focus 
on the underwater domain and the autonomous systems (AS). It includes an extensive set of specialised 
simulation models developed in conjunction with subject matter experts (SMEs) offering complex simulation 
capabilities covering the main aspects of a maritime scenario.    

MSF provides a more comprehensive environment than the traditional robotics simulation or machine learning 
frameworks, which have a reduced simulation scope. This wider simulation capability allows the discovery of 
not foreseen relationships or factors to consider during the learning phases of behaviours for an AS.  

The authors have presented the potential of the MSF as a simulation environment for machine learning 
algorithms with a proof of concept in a distribute simulation between several partners. In particular, one of the 
partners in the consortium used the distributed simulation, where MSF was part, to train and test their machine 
learning algorithms. 

Having successfully demonstrated its ability to support autonomous system development via both technical 
training and testing along with improved support to multiple SME communities, MSF is an evolving 
simulation environment that is continuously improving. 

This work is now progressing onto future opportunities such as the inclusion of additional sensors types, the 
integration of specialized models to improve communications, the inclusion of more environmental conditions, 
and the interoperability with C2 systems by standards interfaces.  
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